1. (a) Use $u=x-1, d u=d x$:

$$
\left.\int_{1}^{3}(x-1)^{25} d x=\int_{0}^{2} u^{25} d u=\frac{u^{26}}{26}\right]_{0}^{2}=\frac{2^{26}}{26}=\frac{67108864}{26}=\frac{33554432}{13} .
$$

(b) Integrate by parts with $u=t \quad d v=\sin t d t$:

$$
d u=d t \quad v=-\cos t
$$

$$
\int t \sin t d t=-t \cos t+\int \cos t d t=-t \cos t+\sin t+C .
$$

(c) Integrate by parts with $u=y \quad d v=e^{-y} d y$:

$$
d u=d y \quad v=-e^{-y}
$$

$$
\int_{0}^{1} y e^{-y} d y=\left[-y e^{-y}\right]_{0}^{1}+\int_{0}^{1} e^{-y} d y=\left[-y e^{-y}-e^{-y}\right]_{0}^{1}=-e^{-1}-e^{-1}+0+1=1-2 e^{-1} .
$$

2. Solve $6 x^{3}-31 x^{2}+32 x+24=-x^{2}+8 x+24$ and get $x=0,1$ or 4 . These are the intersection points. The cubic is above from 0 to 1 , and the quadratic is above from 1 to 4 , so the area is

$$
\begin{aligned}
A & =\int_{0}^{1}\left(6 x^{3}-30 x^{2}+24 x\right) d x-\int_{1}^{4}\left(6 x^{3}-30 x^{2}+24 x\right) d x \\
& =\left[\frac{6}{4} x^{4}-\frac{30}{3} x^{3}+\frac{24}{2} x^{2}\right]_{0}^{1}-\left[\frac{6}{4} x^{4}-\frac{30}{3} x^{3}+\frac{24}{2} x^{2}\right]_{1}^{4} \\
& =\frac{7}{2}-0-\left(-64-\frac{7}{2}\right)=71 .
\end{aligned}
$$

3. We need to integrate with respect to x, so we use the shell method:

$$
\begin{aligned}
V & =\int_{0}^{2}(2 \pi x) \frac{1}{x} \sin \left(\frac{\pi}{2} x\right) d x=2 \pi \int_{0}^{2} \sin \left(\frac{\pi}{2} x\right) d x \\
& =\left[\frac{-2 \pi \cos \left(\frac{\pi}{2} x\right)}{\pi / 2}\right]_{0}^{2}=\left[-4 \cos \left(\frac{\pi}{2} x\right)\right]_{0}^{2} \\
& =-4 \cos \pi+4 \cos 0=4+4=8
\end{aligned}
$$

4. (a) 0 mph
(b) $a(1 / 2)=v^{\prime}(1 / 2)=\left.\left(1-\frac{\sin ^{2} \pi t}{\pi t}\right) \pi\right|_{t=1 / 2}=\left(1-\frac{\sin ^{2}(\pi / 2)}{\pi / 2}\right) \pi=(1-2 / \pi) \pi=\pi-2 \mathrm{mph} / \mathrm{h}$.
(c) Calculate $\sum f\left(x_{i}\right) \Delta x$ with sample points $\pi / 2, \pi, 3 \pi / 2$, and $2 \pi . \Delta x=\pi / 2$:

$$
\begin{aligned}
S & =\left(1-\frac{\sin ^{2}(\pi / 2)}{\pi / 2}\right) \frac{\pi}{2}+\left(1-\frac{\sin ^{2}(\pi)}{\pi}\right) \frac{\pi}{2}+\left(1-\frac{\sin ^{2}(3 \pi / 2)}{3 \pi / 2}\right) \frac{\pi}{2}+\left(1-\frac{\sin ^{2}(3 \pi)}{2 \pi}\right) \frac{\pi}{2} \\
& =\left(1-\frac{2}{\pi}\right) \frac{\pi}{2}+\frac{\pi}{2}+\left(1-\frac{2}{3 \pi}\right) \frac{\pi}{2}+\frac{\pi}{2} \\
& =2 \pi-4 / 3 \approx 4.95 \mathrm{mph} .
\end{aligned}
$$

