Print Your Name
\square

Problem	Total Points	Score
1	15	
2	12	
3	11	
4	12	
Total	50	

Directions

- Please check that your exam contains a total of 5 pages.
- Show all your work or you may not receive credit.
- Place a box around your FINAL ANSWER to each question.
- This exam is closed book. You may use one 8.5×11 sheet of notes and a calculator.
- You may not share notes or calculators. You may not use a graphing calculator or any electronic device other than a calculator.
- If you use a trial and error (guess and check) or other numerical method when an algebraic method is available, you will not receive full credit.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

Signature. Please sign below to indicate that you have not and will not give or receive any unauthorized assistance on this exam.

Signature: \qquad

1. (15 points) Do the following integration problems.
(a) Evaluate $\int_{1}^{3}(x-1)^{25} d x$.
(b) Determine the general form of $\int t \sin t d t$.
(c) Evaluate $\int_{0}^{1} \frac{y}{e^{y}} d y$.
2. (12 points) Determine the total area of the region bounded by $y=6 x^{3}-31 x^{2}+32 x+24$ and $y=-x^{2}+8 x+24$.

3. (11 points) Let R be the region bounded by the equation $y=\frac{1}{x} \sin \left(\frac{\pi}{2} x\right)$, the x-axis, the y-axis, and $x=2$, as shown below. Determine the volume of the solid formed by rotating R about the y-axis.

4. (12 points) The speed of a person in miles per hour is given by the formula

$$
v(t)=\int_{0}^{\pi t}\left(1-\frac{\sin ^{2} x}{x}\right) d x
$$

where t is the number of hours after 12:00 noon.
(a) What is the person's speed at 12:00 noon?
(b) What is the person's acceleration (in miles per hour per hour) at 12:30 p.m.?
(c) Use a Riemann sum with right endpoints and $n=4$ subdivisions to calculate the person's speed at 2 p.m.

