\qquad

Quiz \#2

Show your work. Closed Notes.

1. (7 points) Evaluate the following integrals, if they exist.
(a) $\int_{0}^{4} x^{3} \sqrt{x^{2}+9} d x$

Solution. We use the substitution method with $u=x^{2}+9$, which gives $d u=2 x d x$. We compute the new limits to be 9 and 25 . We also need to use the substitution $x^{2}=u-9$.

$$
\begin{aligned}
\int_{0}^{4} x^{3} \sqrt{x^{2}+9} d x & =\frac{1}{2} \int_{x=0}^{x=4} x^{2} \sqrt{u} d u \\
& =\frac{1}{2} \int_{9}^{25}(u-9) \sqrt{u} d u \\
& =\frac{1}{2} \int_{9}^{25}\left(u^{3 / 2}-9 u^{1 / 2}\right) d u \\
& =\frac{1}{2}\left[\frac{2}{5} u^{5 / 2}-6 u^{3 / 2}\right]_{9}^{25} \\
& =\frac{1}{2}\left[\frac{2}{5} \cdot 25^{5 / 2}-6 \cdot 25^{3 / 2}-\left(\frac{2}{5} \cdot 9^{5 / 2}-6 \cdot 9^{3 / 2}\right)\right] \\
& =\frac{1}{2}\left(1250-750-\frac{486}{5}+162\right) \\
& =\frac{1412}{5} \text { or } 282.4
\end{aligned}
$$

(b) $\int_{-3}^{3} x^{3} \sqrt{x^{2}+9} d x$

Solution. The answer is 0 since we are integrating an odd function from -3 to 3 .
(Continued on back)
2. (8 points) Let R be the region enclosed by the functions $x=y^{2}$ and $y=x^{3}$. Determine the volume of the solid formed by rotating R around the y-axis.

Solution. Here is a picture of the region R :

Since the region is rotated around the y-axis, we compute the area of washers stacked vertically with outer radius $\sqrt[3]{y}$ and inner radius y^{2}. So the volume of the region is given by

$$
\begin{aligned}
\pi \int_{0}^{1}\left[(\sqrt[3]{y})^{2}-\left(y^{2}\right)^{2}\right] d y & =\pi \int_{0}^{1}\left(y^{2 / 3}-y^{4}\right) d y \\
& =\pi\left[\frac{3}{5} y^{5 / 3}-\frac{1}{5} y^{5}\right]_{0}^{1} \\
& =\pi\left(\frac{3}{5}-\frac{1}{5}\right) \\
& =\frac{2 \pi}{5}
\end{aligned}
$$

We could also do this using cylindrical shells. The shells have a height $\sqrt{x}-x^{3}$ and a circumference of $2 \pi x$, so the volume of the region is given by

$$
\begin{aligned}
2 \pi \int_{0}^{1} x\left(\sqrt{x}-x^{3}\right) d x & =2 \pi \int_{0}^{1}\left(x^{3 / 2}-x^{4}\right) d x \\
& =2 \pi\left[\frac{2}{5} x^{5 / 2}-\frac{1}{5} x^{5}\right]_{0}^{1} \\
& =2 \pi\left(\frac{2}{5}-\frac{1}{5}\right) \\
& =\frac{2 \pi}{5}
\end{aligned}
$$

