1. (a) Let $\mathbf{a} = \overrightarrow{BA} = \langle 1, 1, 1 \rangle$ and $\mathbf{b} = \overrightarrow{BC} = \langle -1, 0, -2 \rangle$. Then

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} = \frac{-3}{\sqrt{3}\sqrt{5}} = -\frac{3}{\sqrt{15}}$$

Therefore $\theta = 2.46$ in radians, or $\theta = 141^{\circ}$.

- (b) The plane has normal vector (3, -1, -5) and goes through (1, 1, 1), so the equation is 3(x-1) 1(y-1) 5(z-1) = 0 or 3x y 5z + 3 = 0.
- (c) Let $\mathbf{a} = \langle 1, -4, 2 \rangle$ and $\mathbf{b} = \langle 1, -1, 0 \rangle$ be the normal vectors of these planes. Then the direction vector of the line is $\langle 2, 2, 3 \rangle$. Since the lines passes through the origin, the equation for the line is $\mathbf{r}(t) = \langle 2t, 2t, 3t \rangle$.
- 2. (a) At (0,0), we have t = 0. We have $\frac{dy}{dx} = \frac{5\cos t}{2t+1}$, and when t = 0, this is 5.
 - (b) From part (a), we know that the curve passes through (0,0) and has slope 5 there. The graph on the left is the only one with these properties.
- 3. (a) f_x is positive in the right half of the graph. f_y is negative on the bottom half of the graph. So anywhere in the bottom right part of the graph.
 - (b) Any point centered horizontally on the graph, where the level curves are horizontal.
- 4. (a) $\mathbf{a}(t) = \mathbf{r}''(t) = \langle -\cos t, -\sin t, -9.8 \rangle.$
 - (b) The velocity of the particle is $\mathbf{r}'(t) = \langle -\sin t, \cos t, -9.8t \rangle$, and the speed is $\sqrt{\sin^2 t + \cos^2 t + (9.8t)^2} = \sqrt{1 + (9.8t)^2}$. The particle hits the ground when $z = 9.8 4.9t^2 = 0$, which is when $t = \sqrt{2}$. At this time, the speed is $\sqrt{1 + (9.8)^2(2)} = \sqrt{193.08} = 13.9 \text{ m/s}$
- 5. (a) We have $\mathbf{r}'(t) = \langle 1, 2t, 0 \rangle$ and $\mathbf{r}''(t) = \langle 0, 2, 0 \rangle$. Then the curvature at t = 1 is

$$\frac{|\mathbf{r}'(1) \times \mathbf{r}''(1)|}{|\mathbf{r}'(1)|^3} = \frac{|\langle 0, 0, 2 \rangle|}{|\langle 1, 2, 0 \rangle|^3} = \frac{2}{5^{3/2}} = \frac{2\sqrt{5}}{25}$$

- (b) The vector $\mathbf{r}'(1) = \langle 1, 2, 0 \rangle$ is tangent to the curve at the point $\mathbf{r}(1) = \langle 1, 0, 1 \rangle$. So the normal plane is 1(x-1) + 2(y-0) + 0(z-1) = 0, or x + 2y 1 = 0.
- 6. (a) First we compute $\mathbf{r}'(t) = \langle 4t, -4t, 2t \rangle$ and $|\mathbf{r}'(t)| = 6|t|$. Since we only care about positive t, this is equal to 6t. The arc length function is $s(t) = \int_0^t 6u \, du = 3t^2$. This means that $t^2 = s/3$ and $t = \sqrt{s/3}$. Substituting this expression in for t, we get $\mathbf{r}(s) = \left\langle \frac{2s}{3}, 1 \frac{2s}{3}, 5 + \frac{s}{3} \right\rangle$.
 - (b) The length of the curve from 0 to 3 is $s(3) = 3(3^2) = 27$.