1. In polar coordinates, the surface has equation r^{4}. So we need to compute

$$
\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{5} d r d \theta=\int_{0}^{\frac{\pi}{2}} \frac{1}{6} d \theta=\frac{\pi}{12}
$$

2. The integral we are looking for is

$$
\int_{\frac{\pi}{4}}^{\pi} \int_{5}^{9} r d r d \theta=\int_{\frac{\pi}{4}}^{\pi}\left(\frac{81}{2}-\frac{25}{2}\right) d \theta=21 \pi
$$

3. (a) We calculate $f(1)=3$ and $f^{\prime}(1)=5$, so $T_{1}(x)=3+5(x-1)$.
(b) Since $f^{\prime \prime}(x)=2$, the error is less than or equal to $\frac{2}{2}|x-1|^{2}=|x-1|^{2}$. On the interval $[0.5,1.5],|x-1| \leq 0.5$, so the error is less than or equal to $(0.5)^{2}=0.25$.
(c) We need $|x-1|^{2} \leq 0.01$, so we need $|x-1| \leq \sqrt{0.01}=0.1$. So the interval we are looking for is $[0.9,1.1]$. (Any interval smaller than this would work also.)
