SOLUTIONS TO QUIZ 2

(1) (a) $x=t^{2}, y=t^{3}$ is on the bottom right because x is always positive.
(b) $x=\sin t, y=\cos (3 t)$ is on the top right because if $x=0$ then $t=0$ or π, in which case y is 1 or -1 .
(c) $x=t \cos (2 t), y=t \sin (2 t)$ is on the top left because the sin and cos makes it go around in a circle, and multiplying by t makes the radius grow as the angle increases.
(d) $x=t, y=t^{3}$ gives the curve $y=x^{3}$, which is in the bottom left.

$$
\begin{align*}
& \mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}+1,2 t+1,1\right\rangle \tag{2}\\
& \mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)=\langle 6 t, 2,0\rangle \\
& \mathbf{F}(t)=m \mathbf{a}(t)=\langle 6 t m, 2 m, 0\rangle
\end{align*}
$$

(3) As x goes from 0 to $1 / \sqrt{2}, t$ goes from 0 to $\pi / 4$. So we have

$$
A=\int_{0}^{1 / \sqrt{2}} y d x=\int_{0}^{\pi / 4} \frac{1}{\cos t} \cos t d t=\int_{0}^{\pi / 4} 1 d t=\pi / 4
$$

(4) (a) We compute

$$
\begin{aligned}
\mathbf{r}^{\prime}(t) & =\langle 2 \cos t, 4,-2 \sin t\rangle \\
\left|\mathbf{r}^{\prime}(t)\right| & =\sqrt{4 \cos ^{2} t+16+4 \sin ^{2} t}=\sqrt{20}=2 \sqrt{5}
\end{aligned}
$$

so

$$
\mathbf{T}(t)=\frac{\mathbf{r}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}=\left\langle\frac{\cos t}{\sqrt{5}}, \frac{2}{\sqrt{5}},-\frac{\sin t}{\sqrt{5}}\right\rangle .
$$

(b) We compute

$$
\begin{aligned}
\mathbf{T}^{\prime}(t) & =\left\langle\frac{-\sin t}{\sqrt{5}}, 0, \frac{-\cos t}{\sqrt{5}}\right\rangle \\
\left|\mathbf{T}^{\prime}(t)\right| & =\sqrt{\frac{\sin ^{2} t+\cos ^{2} t}{5}}=\frac{1}{\sqrt{5}}
\end{aligned}
$$

so

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}=\langle\sin t, 0,-\cos t\rangle
$$

(c) We have

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{1 / \sqrt{5}}{2 \sqrt{5}}=\frac{1}{10}
$$

