1.

$$
\frac{\partial f}{\partial x}=\cos (y z) \quad \frac{\partial^{2} f}{\partial z \partial x}=-y \sin (y z) \quad \frac{\partial^{3} f}{\partial y \partial z \partial x}=-\sin (y z)-y z \cos (y z)
$$

2. If the surface is $z=f(x, y)$, then

$$
\begin{array}{ll}
f_{x}(x, y)=6 x-6 y & f_{y}(x, y)=-6 x+6 y^{2} \\
f_{x}(1,2)=-6 & f_{y}(1,2)=18
\end{array}
$$

Since $f(1,2)=7$, the plane passes through the point $(1,2,7)$, and the equation of the plane is $z-7=-6(x-1)+18(y-2)$ which simplifies to $z=9 x+6 y-23$
3. Using f_{x} and f_{y} computed above, we get two critical points, $(0,0)$ and $(1,1)$. We then compute $f_{x x}=6, f_{y y}=12 y$ and $f_{x y}=-6$. So $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=72 y-36$. This is equal to -36 at $(0,0)$, meaning that this point is a saddle point. $D=36$ at $(1,1)$, so this point is either a maximum or minimum. Since $f_{x x}(1,1)=6$, it must be a minimum.

