1. The values of f at the midpoints are approximately, beginning at the top left:

$$
5,5,10,4,4,5,3,3,5
$$

Adding these together, we get 44; multiplying by $\Delta x \Delta y=4$, we get a volume under the graph of 176 . Dividing by the area of the domain, which is 36 , we get 4.89 . Your estimate may be slightly different. The actual value is 4.75 .
2. Integrate first with respect to x and then y to make it easier:

$$
\begin{aligned}
\int_{0}^{\pi} \int_{0}^{3} y \cos (x y) d x d y & =\int_{0}^{\pi}[\sin (x y)]_{x=0}^{x=3} d y \\
& =\int_{0}^{\pi} \sin (3 y) d y \\
& =-\left.\frac{1}{3} \cos (3 y)\right|_{0} ^{\pi} \\
& =-\frac{1}{3}(-1)+\frac{1}{3}(1) \\
& =\frac{2}{3}
\end{aligned}
$$

3. The easiest thing is to integrate y from 0 to 1 and x from -1 to \sqrt{y}, although you could also split it into two parts and integrate over the square in the second quadrant and then x from 0 to 1 and y from x^{2} to 1 . I will do it the first way.

$$
\begin{aligned}
\int_{0}^{1} \int_{-1}^{\sqrt{y}} 2 x d x d y & =\int_{0}^{1}\left[x^{2}\right]_{x=-1}^{x=\sqrt{y}} d y \\
& =\int_{0}^{1}[y-1] d y \\
& =\frac{1}{2} y^{2}-\left.y\right|_{0} ^{1} \\
& =\frac{1}{2}-1 \\
& =-\frac{1}{2}
\end{aligned}
$$

