
ANSWERS TO WORKSHEET 2 (POLAR COORDINATES)
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(1c) The math on this one is pretty tricky. The main idea is to eliminate the
r and θ in the equation. I can multiply both sides of sec(θ + π/3) = r by
cos(θ + π/3) to get

1 = r cos(θ + π/3) = r(cos θ cosπ/3− sin θ sinπ/3)

= r
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So x−
√
3y = 2, which is a line:
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(2a) x2+y2 is obviously 4, so this is a circle, which has polar equation r = 2. The
square root sign means to take the positive square root only, so technically
x should always be positive, which means we have the right half of a circle.
This doesn’t change the polar equation, but it means that −π/2 ≤ θ ≤ π/2.

(2b) This takes some ingenuity, but to get the line x + y = 1 we need r cos θ +

r sin θ = 1. Since cos(π/4) = sin(π/4) = 1/
√
2, we can rewrite this as

1 = r
√
2 (cos θ sin(π/4) + sin θ cos(π/4)) = r

√
2 sin(θ + π/4)

Solving for r, we get

r =
1√

2 sin(θ + π/4)
=

csc(θ + π/4)√
2

.

So the equations for the region are 0 ≤ θ ≤ π/2 and 0 ≤ r ≤ csc(θ+π/4)√
2

.

(3) The velocity vector is 〈r′ cos θ − r sin(θ)θ′, r′ sin θ + r cos(θ)θ′〉. When we
take the length of this vector lots of sin’s and cos’s cancel out to give us√
[r′(t)]2 + [r(t)]2[θ′(t)]2.

(4a) r′(t) = 1 and θ′(t) = 1. So the speed is
√
1 + r2 =

√
1 + θ2 =

√
1 + t2.
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(4b) r′(t) = cos t and θ′(t) = 1. So the speed is
√

cos2 t+ sin2 t = 1.
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