ANSWERS TO WORKSHEET 2 (POLAR COORDINATES)

NATHAN GRIGG

(1a)

(1b)

(1c) The math on this one is pretty tricky. The main idea is to eliminate the r and θ in the equation. I can multiply both sides of $\sec (\theta+\pi / 3)=r$ by $\cos (\theta+\pi / 3)$ to get

$$
\begin{aligned}
1 & =r \cos (\theta+\pi / 3)=r(\cos \theta \cos \pi / 3-\sin \theta \sin \pi / 3) \\
& =r\left(\left(\frac{x}{r}\right)\left(\frac{1}{2}\right)-\left(\frac{y}{r}\right)\left(\frac{\sqrt{3}}{2}\right)\right)=\frac{x}{2}-\frac{\sqrt{3} y}{2}
\end{aligned}
$$

So $x-\sqrt{3} y=2$, which is a line:

1
(2a) $x^{2}+y^{2}$ is obviously 4 , so this is a circle, which has polar equation $r=2$. The square root sign means to take the positive square root only, so technically x should always be positive, which means we have the right half of a circle. This doesn't change the polar equation, but it means that $-\pi / 2 \leq \theta \leq \pi / 2$.
(2b) This takes some ingenuity, but to get the line $x+y=1$ we need $r \cos \theta+$ $r \sin \theta=1$. Since $\cos (\pi / 4)=\sin (\pi / 4)=1 / \sqrt{2}$, we can rewrite this as

$$
1=r \sqrt{2}(\cos \theta \sin (\pi / 4)+\sin \theta \cos (\pi / 4))=r \sqrt{2} \sin (\theta+\pi / 4)
$$

Solving for r, we get

$$
r=\frac{1}{\sqrt{2} \sin (\theta+\pi / 4)}=\frac{\csc (\theta+\pi / 4)}{\sqrt{2}}
$$

So the equations for the region are $0 \leq \theta \leq \pi / 2$ and $0 \leq r \leq \frac{\csc (\theta+\pi / 4)}{\sqrt{2}}$.
(3) The velocity vector is $\left\langle r^{\prime} \cos \theta-r \sin (\theta) \theta^{\prime}, r^{\prime} \sin \theta+r \cos (\theta) \theta^{\prime}\right\rangle$. When we take the length of this vector lots of sin's and cos's cancel out to give us $\sqrt{\left[r^{\prime}(t)\right]^{2}+[r(t)]^{2}\left[\theta^{\prime}(t)\right]^{2}}$.
(4a) $r^{\prime}(t)=1$ and $\theta^{\prime}(t)=1$. So the speed is $\sqrt{1+r^{2}}=\sqrt{1+\theta^{2}}=\sqrt{1+t^{2}}$.

(4b) $r^{\prime}(t)=\cos t$ and $\theta^{\prime}(t)=1$. So the speed is $\sqrt{\cos ^{2} t+\sin ^{2} t}=1$.

