Final Exam Take Home Problem, Math 324 Summer 2011

Please read all instructions carefully.

Solution Format

- Use 8.5 by 11 -inch paper for your solution.
- Limit your writing area to 188 in 2 (one double-sided page or two single-sided pages).
- Write neatly or type your solution.
- I highly recommend solving the problem first using scratch paper and then rewriting the solution so that it is clean, concise, and complete.

Rules

- You may use your book, class notes, and any calculator.
- You may not discuss the specifics of this problem with anyone besides me.
- You may not search the internet looking for ideas, hints, or answers.

Due at the beginning of class on Friday, August 19.

Let $\mathbf{F}=\frac{\langle x, y, z\rangle}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$. This vector field represents the electric field created by a certain charge centered at the origin.
(a) Calculate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is the sphere of radius a centered at the origin.
(b) Find curl \mathbf{F} and $\operatorname{div} \mathbf{F}$ at every point except the origin.
(c) Use the Divergence Theorem to explain why your answer to Part (a) doesn't depend on a.
(d) Use Stokes' Theorem to explain why line integrals of \mathbf{F} are independent of path (see p. 1047 for an explanation of path independence).

