Print your name:
Score

1. Evaulate the iterated integral by converting to polar coordinates.

$$
\int_{-3}^{3} \int_{0}^{\sqrt{9-y^{2}}} \sin \left(x^{2}+y^{2}\right) d x d y
$$

Solution: The region is the right-half of a circle of radius 3 , so r goes from 0 to 3 and θ goes from $-\pi / 2$ to $\pi / 2$. The limits do not depend on each other, so it does not matter which order we do the integration. So we have

$$
\begin{aligned}
\int_{0}^{3} \int_{-\pi / 2}^{\pi / 2} \sin \left(r^{2}\right) r d \theta d r & =\int_{0}^{3}\left[\sin \left(r^{2}\right) r \theta\right]_{\theta=-\pi / 2}^{\theta=\pi / 2} d r \\
& =\int_{0}^{3} \pi \sin \left(r^{2}\right) r d r \\
{\left[u=r^{2}, d u=2 r d r\right] } & =\frac{1}{2} \pi \int_{u=0}^{u=9} \sin u d u \\
& =-\frac{\pi}{2}[\cos u]_{0}^{9} \\
& =\frac{\pi}{2}(1-\cos 9)
\end{aligned}
$$

