Print your name:
Score

1. Use either cylindrical or spherical coordinates to find the mass of the region that is above the plane $z=0$, outside of the cone $x^{2}+y^{2}=z^{2}$, and inside the sphere $x^{2}+y^{2}+z^{2}=2$ and has density function z.

Solution: The answer is $\pi / 2$.

Spherical coordinates: The equation of the sphere is $\rho=\sqrt{2}$ and the equation of the cone is $\cos \phi=\sin \phi$, i.e., $\phi=\pi / 4$. Since $z=\rho \cos \phi$, and the Jacobian is $\rho^{2} \sin \phi$, we have the integral

$$
\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{\sqrt{2}} \rho^{3} \sin \phi \cos \phi d \rho d \phi d \theta
$$

Cylindrical coordinates: You may be tempted to put the $d z$ on the inside, but that won't work unless you split the integral into two integrals, because for some points in the $x y$ plane the region is bounded above by the cone, and for other points the region is bounded above by the sphere. You can do it all in one by putting $d r$ on the inside and noting that r ranges from the cone $(r=z)$ to the sphere $\left(r^{2}+z^{2}=2\right)$ at each value of z and θ. So we have

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{z}^{\sqrt{2-z^{2}}} z r d r d z d \theta
$$

BONUS (worth 500 feel-special points, 0 class points): Write the same integral in spherical coordinates if you used cylindrical above, or vice versa.

