Print your name: \qquad Score

1. Determine $\int_{C}(x+y) d s$ if C is the curve consisting of the line from $(0,0)$ to $(2,2)$ followed by the half circle that goes counterclockwise from $(2,2)$ to $(-2,-2)$.

Solution: We'll split the curve in two. The line segment can be parametrized by $\mathbf{r}(t)=\langle 2 t, 2 t\rangle, 0 \leq t \leq 1$. Then the integral is

$$
\int_{0}^{1} 4 t \sqrt{8} d t=\int_{0}^{1} 8 \sqrt{2} t d t=\left.4 \sqrt{2} t^{2}\right|_{0} ^{1}=4 \sqrt{2}
$$

The circle has radius $2 \sqrt{2}$, so can be parametrized by $\mathbf{r}(t)=2 \sqrt{2}\langle\cos t, \sin t\rangle, \pi / 4 \leq$ $t \leq 5 \pi / 4$. So the integral is

$$
\int_{\pi / 4}^{5 \pi / 4} 2 \sqrt{2}(\cos t+\sin t) 2 \sqrt{2} d t=8(\sin t-\cos t)_{\pi / 4}^{5 \pi / 4}=0
$$

Then the final answer is $4 \sqrt{2}$.

