Print your name: \qquad

1. Parametrize the torus (doughnut) given in spherical coordinates by the equation

$$
\rho=\sin \phi .
$$

Solution:

$$
\mathbf{r}(\phi, \theta)=\left\langle\sin ^{2} \phi \sin \theta, \sin ^{2} \phi \cos \theta, \sin \phi \cos \phi\right\rangle
$$

2. Find a unit normal vector at the point $(1,0,0)$, which is when $\rho=1, \phi=\pi / 2, \theta=0$.

Solution:

$$
\begin{aligned}
\mathbf{r}_{\phi} & =\left\langle 2 \sin \phi \cos \phi \sin \theta, 2 \sin \phi \cos \phi \cos \theta, \cos ^{2} \phi-\sin ^{2} \phi\right\rangle=\langle 0,0,-1\rangle \\
\mathbf{r}_{\theta} & =\left\langle\sin ^{2} \phi \cos \theta,-\sin ^{2} \phi \sin \theta, 0\right\rangle=\langle 1,0,0\rangle
\end{aligned}
$$

The cross product is $\langle 0,-1,0\rangle$. It is already a unit vector.
You could also put $\langle 0,1,0\rangle$ which is the natural orientation because it points out of the torus.

