Print your name: \qquad

1. Use Stokes' Theorem to evaluate

$$
\int_{C}\left\langle y z+3 x z, 5 x+z+x z, 6+x y+e^{x y z}\right\rangle \cdot d \mathbf{r}
$$

where C is the circle at the intersection of the cylinder $x^{2}+y^{2}=4$ and the plane $z=14$, oriented in the counterclockwise direction when looking down from above.

Solution: Let \mathbf{F} be the vector field that we are integrating. Notice that curl $\mathbf{F}=$ $\left\langle x z e^{x y z}-1,3 x+y z e^{x y z}, 5\right\rangle$. For Stokes' Theorem, we can use any surface that has the given circle as boundary, but I would choose the disk of radius 2 inside the plane $z=14$. This can be parametrized by $\mathbf{r}(x, y)=\langle x, y, 14\rangle$ for (x, y) in the disk of radius 2 , which I will call D. We calculate $\mathbf{r}_{x} \times \mathbf{r}_{y}=\langle 0,0,1\rangle$. So by Stokes' Theorem, the integral above is the same as

$$
\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot\langle 0,0,1\rangle d A=\iint_{D} 5 d A=5(\text { area of disk })=20 \pi .
$$

