MATH 124 REVIEW PROBLEMS, AUTUMN 2007

NATHAN GRIGG

1. A fence 8 ft tall runs parallel to a tall building at a distance of 4 ft from the building. What is the length of the shortest ladder that will reach from the ground over the fence to the wall of the building?

2. A kite 100 ft above the ground moves horizontally at a speed of $8 \mathrm{ft} / \mathrm{s}$. At what rate is the angle between the string and the horizontal decreasing when 200 ft of string have been let out?
3. The x^{y} button on your calculator is broken, and you need to find out what $5^{0.99}$ is. Luckily, you can figure out 5^{1} in your head and use tangent line approximation to get an approximate value for $5^{0.99}$. What do you get for your approximation?
4. Let

$$
F(x)=\frac{x^{2}-1}{|x-1|}
$$

Find $\lim _{x \rightarrow 1^{+}} F(x)$ and $\lim _{x \rightarrow 1^{-}} F(x)$ and say whether or not $\lim _{x \rightarrow 1} F(x)$ exists.
5. Find the derivative of x^{x}.
6. ${ }^{1}$ Define a function $f(x)$ as follows:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}
$$

Use the squeeze theorem to show that $\lim _{x \rightarrow 0} f(x)=0$.

[^0]
[^0]: ${ }^{1}$ Note: Problem 6 is on this review because some people wanted to practice a squeeze theorem problem. You should all know what the squeeze theorem is, and it is possible that there will be a squeeze theorem problem on the final, but spend most of your time studying the more important stuff in problems 1-5.)

