Miscellaneous notes on parametric equations

Nathan Grigg

July 2, 2010

An entire line parametrized by a finite interval

It is possible for a parametric curve to extend off to infinity even though the parameter is bounded. For example, the following parametric equations

$$
\begin{aligned}
& x=\frac{1}{1-t}-\frac{1}{t} \\
& y=\frac{1}{1-t}-\frac{1}{t}
\end{aligned}
$$

trace out the line $x=y$ as t goes from 0 to 1 . Here is a graph of the line with some t-values labelled.

Area under semicircle using parametric equations

The upper half of a circle is parametrized by

$$
\begin{aligned}
& x=\cos t \\
& y=\sin t
\end{aligned}
$$

as t goes from 0 to π. The area under the semicircle is given by

$$
\begin{aligned}
\int_{-1}^{1} y d x & =\int_{\pi}^{0} \sin t(-\sin t) d t \\
& =\int_{0}^{\pi} \sin ^{2} t d t \\
& =\frac{1}{2} \int_{0}^{\pi}(1-\cos 2 t) d t \\
& =\left.\frac{1}{2}\left(t-\frac{1}{2} \sin t\right)\right|_{0} ^{\pi} \\
& =\frac{1}{2}(\pi)=\frac{\pi}{2}
\end{aligned}
$$

Notice that the integral originally goes from π to 0 because $t=\pi$ when $x=-1$ and $t=0$ when $x=1$. Then when we switch 0 and π we multiply by -1 , which cancels out the minus sign already in the integrand. We integrate $\sin ^{2} t$ using the trig identity $\sin ^{2} t=\frac{1}{2}(1-\cos t)$.

