Midterm 2 Review Session

1. The Super Cheap Golf Ball Company currently makes a golf ball of radius 2 cm . Taking into account the different cost of the core material and the cover, their accounting department has figured out that it costs $r^{3}+2 r^{2}$ cents to make a golf ball of radius $r \mathrm{~cm}$, so their current ball costs 16 cents to make. Hoping that no one will notice, they plan to make a smaller ball that only costs 15 cents to make. Use tangent line approximation to estimate the radius of their new ball.
2. Sand is being dumped from a conveyor belt at a rate of $10 \pi \mathrm{ft}^{3} / \mathrm{min}$, forming a conical pile of sand. Five minutes after the pile starts, the radius of the base is 5 ft and the height is 6 ft , and at that time the height is increasing at a rate of $1 \mathrm{ft} / \mathrm{min}$. How fast is the radius of the base changing five minutes after the piles starts?
(Equation for volume of a cone: $V=\frac{\pi}{3} r^{2} h$)
3. The flow of blood (in $\mathrm{cm}^{3} / \mathrm{sec}$) through a blood vessel of radius r can be estimated by $F=k r^{4}$, where k is some constant. If the radius of the blood vessel is increased by 3%, by what percent will the flow of blood increase?
4. The Pyramid at Kufu in Egypt is 480 ft tall and has a square base measuring 750 ft on each side. Suppose that when the partially built pyramid was 240 ft tall, its height was increasing at a rate of approximately $2 \mathrm{ft} /$ year. If the pyramid was built entirely out of rocks that measured $6 \mathrm{ft} \times 2 \mathrm{ft} \times 3 \mathrm{ft}$, about how many of these massive blocks was being added to the pyramid per year?
(A partially completed pyramid is called a frustum and has a square top and bottom and trapezoidal sides. If A is the area of the top square and B is the area of the base, the volume of a frustum is $V=\frac{1}{3} h(A+B+\sqrt{A B})$. You will also need to know that if s is the length of one of the sides of the top square, then $s=\frac{25}{16}(480-h)$. There is a lot of information here, so define your variables carefully!)
5. (Just for fun) Take the derivative of this function:

$$
\sin ^{2}\left[\ln \left(\left(\cos \left(e^{x}\right)\right)+\tan ^{-1}(2 x) \sqrt{52 x}\right]\right.
$$

